986 resultados para LVL panels


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper mainly aimed to evaluate the physical and mechanical properties of LVL panels made from Eucalyptus grandis, from reforestation at the region of Senges, in Parana state, Brazil. LVL panels were manufactured using 23 veneers (2,4mm thick each one) in commercial dimension of 2.500 mm long and 1,200 mm wide. The properties of static bending were analyzed (strength and rigidity) in beams of the LVL, in the flatwise and edgewise positions. The properties of compression parallel to grain and shear parallel in the plans L-X and L-Y and density in this LVL panels were also analyzed according to ASTM-D 5456/4761 and ASTM-D 198 codes. The mean values to flatwise bending MOE and MOR were 13114 MPa and 88.76 MPa, respectively, and for edgewise bending MOE and MOR were 15871 MPa and 88.63 MPa, respectively. The density (12%) of the LVL panels and of the veneers were 690 kg/m(3) and 649 kg/m(3). The mean values to parallel compression MOE and MOR were 16856 MPa and 58.05 MPa, respectively. The mean values of the maximum resistance to shear parallel in the plans L-X and L-Y were 5.96 MPa and 591 MPa, respectively. All these values reached partially or they passed the medium limits of reference (normative codes, researches and commercial catalogs) established for LVL panels and original solid wood, attesting overall the quality of those panels produced with this wood.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to analyze the behavior of the flow of heat (temperature) through the thickness of panels LVL (Laminated veneer lumber) produced with phenol formaldehyde adhesive, in laboratorial and industrial scales. Experimental program was conducted with five LVL panels (three produced in laboratorial scale and two in industrial scale) with different arrangements of a mix of commercial veneers from tropical pinus from the south region of Sao Paulo State, Brazil, bonded using phenol formaldehyde adhesive. The temperature inside the panels during the pressing process was evaluated using thermocouples type T (cooper-constantan), installed mostly in the center of the glue lines and connected to a data acquisition system. The graphics of temperature as a function of the time showed a gradual increase of temperature up to pre-set values, remaining constant from them. The temperature reached at the center of the panels was adequate to promote the curing of the adhesive. These pre-set values were similar to the minimum values presented by other authors and manufacturers of these adhesives that affirm that temperatures above 100ºC at the center of laminated panels bonded with phenolic adhesives are sufficient to ensure proper cure of the resin. The time necessary for curing of the adhesives confirmed the validity of practical expressions provided by adhesive manufacturers.

Relevância:

20.00% 20.00%

Publicador: